
PDF Mayhem: Is Broken Really Broken?

Juha Lehtonen
CSC – IT Center for Science

P.O. Box 405
FI-20101 Espoo

Finland
juha.lehtonen@csc.fi

Heikki Helin
CSC – IT Center for Science

P.O. Box 405
FI-20101 Espoo

Finland
heikki.helin@csc.fi

Johan Kylander
CSC – IT Center for Science

P.O. Box 405
FI-20101 Espoo

Finland
johan.kylander@csc.fi

Kimmo Koivunen
CSC – IT Center for Science

P.O. Box 405
FI-20101 Espoo

Finland
kimmo.koivunen@csc.fi

ABSTRACT

In this paper, we focus on the quality of PDF files. We are

interested in errors that validators report during the validation

process: how accurate are these errors and can we build easy

workarounds to avoid or even fix these problems?We present our

findings from a pilot experiment where we validated more than

200,000 PDF files from well-known corpora with different

validators and found several thousand problematic files. We then

devised a process of reconstructing the invalid files and analyzing

the converted data. Our results show that there are potentially

working methods for avoiding problems during the PDF

validation and these methods can significantly reduce the

workload for preservation specialists who are responsible for the

quality of the data. Our further aim is to master and manage PDF

validation so that we can build an automated workflow which is

able to migrate most of PDF files to PDF/A files during the ingest

of a digital preservation repository. To achieve this in reliable

manner we need further studies to build on what we have

presented here.

CONFERENCE THEME

• Sustainable digital preservation approaches and communities

KEYWORDS

Automated digital restoration, file format validation, PDF, PDF/A

1 INTRODUCTION

PDFs, and especially PDF/As, are considered to be good file format

candidates for digital preservation, although the format has its

documented issues [1]. In this paper our focus is not to evaluate

whether PDFs and PDF/As are suitable for preservation. Rather

we start by acknowledging the fact that these formats are very

1 http://www.digitalpreservation.fi/specifications/

widely used, but also that invalid PDF files are quite common,

according to our experience. How to deal with these invalid PDF

files pose a huge challenge within the context of digital

preservation. In this paper, we analyze and provide preliminary

results on how the tackle the problem of invalid PDFs and their

errors automatically and with very little human intervention.

The Finnish national digital preservation service for the

cultural heritage sector has been in production since 2015 [2].

Following international recommendations within the digital

preservation community [3], we manage file formats and a high

quality of data by maintaining national recommendations for file

formats acceptable for preservation and transfer to the national

services1 . PDF files (either PDF or PDF/A) are unsurprisingly

among the allowed file formats in our national recommendations.

Various Finnish memory organizations (libraries, archives,

museums) with different kinds of background are ingesting digital

assets, including PDF files, to our service [4]. Obviously, we do

not have any control on how they produce the material.

Sometimes even the partner organizations do not have that

control by themselves since stakeholders may be providing the

digital assets to them. We have found out that some of our partner

organizations are using tailor-made software for producing PDFs.

These software are not primarily made for generating PDF files

and they produce PDFs only as a “side-effect”. Some of these

tailor-made software fail to produce valid PDF files. Instead, they

produce files typically containing several systematic errors.

However, it seems that even if the errors are systematic, they have

only minor, if any, effect on the presentation of a PDF file. Perhaps

the main reason for these minor errors is the technical complexity

of the format (see [1]).

Our preservation service validates all digital objects in a

Submission Information Package (SIP) during the ingest process

and rejects the SIP if the validation of any digital object fails. We

have found out that invalid PDF files are common reasons for



digital object validation failures. Thus, it would be better to

validate files before ingesting them and fix potential problems

beforehand. Partner organizations may believe, however, that if

PDF files can be opened using tools like Acrobat Reader, they are

valid. That is why many of them consider the “pre-validation”

unnecessary.We have a need to support our partner organizations

by defining an effective process to minimize the amount of invalid

PDF files sent our service for ingest.

We will show that sometimes simple/minor errors in the PDF

files can be corrected automatically and fairly simply. Automatic

correction is very important since manual correction is costly, or

even virtually impossible, if the number of files is large enough

(consider manually fixing a minor error in 100,000 PDF files). In

many cases, using existing tools to reconstruct the PDF file can

achieve a desired result. We set the errors that we cannot correct

automatically aside for future detailed studies.

2 EXPERIMENTAL DETAILS

We created a pilot experiment of a simple automated PDF

restoration process. Our goal was to test the effort required to

restore a wide range of PDF documents. This pilot experiment is

a first step towards understanding the errors and their potential

mitigation in our own validation process and the data submitted

to us. We will now present our test data, the software used in the

experiment and the automated process.

2.1 Test Data

We selected two different PDF test sets for this study: JHOVE PDF

Test Corpora, and Govdocs1.

JHOVE PDF Test Corpora2 is a test set for JHOVE by Open

Preservation Foundation3 containing 90 PDF files. One is a well-

formed and valid PDF document just containing the text “Hello

PDF-world!” The set contains 88 erroneous files synthetically

created from the valid one. Additionally, there is a minimal PDF

containing only a version header and end-of-file tag (we chose to

skip this file). The reason for selecting this dataset was to have a

manageable set of known errors as a controlled set.

Govdocs14 is a document corpus by Digital Corpora site5. This

dataset is very large and heterogeneous, containing nearly one

million files of various formats. These files are collected from the

.gov domain by using Google and Yahoo search engines. We used

only the PDF files from this dataset and skipped a few of those,

since they either were duplicates or reported to contain malware.

This resulted in a test set consisting of 229,597 PDF files. The

reason for selecting this dataset was to have a wide range of real-

life examples instead of synthetically generated errors.

2 https://github.com/openpreserve/jhove/tree/ipres/pdf-test-all/test-root/corpora/
ipres-paper-pdfs/modules/PDF-hul
3 http://openpreservation.org/
4 https://digitalcorpora.org/corpora/files
5 https://digitalcorpora.org/
6 http://jhove.openpreservation.org/
7 https://www.ghostscript.com/
8 http://www.xpdfreader.com/
9 http://verapdf.org/

2.2 Validation Software

We selected three different software for PDF validation:

Ghostscript 9.22, JHOVE 1.20.1, and Xpdf 4.00. Additionally, we

used veraPDF 1.10.6 for PDF/A validation and Acrobat Reader and

Pdf-diff tool for manual comparison.

JHOVE6 is the only one of these software, which is stated as a

validator, and it is capable of validating various file formats.

JHOVE is created by JSTOR and Harvard University Library and

is currently developed by the Open Preservation Foundation.

Ghostscript7 is an interpreter for PS and PDF files, originally

developed by L. Peter Deutch for the GNU Project in 1986. Artifex

Software is the current developer of the software. To make

Ghostscript work as a validator, we simply converted the PDF files

to “None”. Ghostscript examines the file in the conversion and if

it finds errors, it prints them to the standard output during

conversion. Since the result type is “None”, it does not give an

actual conversion output. We also used Ghostscript as a

reconstruction software from PDF to PDF and as a conversion

software from PDF to PDF/A.

Xpdf 8 is a software developed by Derek Noonburg since 1995.

Some open source PDF analysis tools use the PDF toolset

contained in Xpdf and we chose to use the pdfinfo tool from this

toolset. Pdfinfo extracts metadata from PDF files and prints out

found errors.

veraPDF9 is a PDF/A validator developed in the PREFORMA

project10 by the veraPDF consortium, whose members are the

Open Preservation foundation, the PDF Association, and the

Digital Preservation Coalition.

Pdf-diff11 is a small Python tool for visual PDF comparison. It

creates an image of the differences from two given PDF

documents. Acrobat Reader12 is a well-known reader for PDF files

created in 1993 by Adobe Systems.

2.3 Validation and Conversion Process

Figure 1 depicts our validation and conversion process containing

five steps (a)-(e). We validated each set with JHOVE, Ghostscript

and Xpdf (step a). If any of these gave errors or warnings, we

considered the PDF file problematic13. If the validators did not

report errors or warnings, we considered the PDF file fully well-

formed and valid. Since we were only interested in problematic

files in this test, we skipped the well-formed and valid files in the

following steps.

The next step was to convert the problematic files to both

PDF 14 (reconstruction) and PDF/A-1b, see step (b). We used

Ghostscript for this purpose and used the instructions found in

Ghostscript’s documentation when creating the PDF/A files15 .

Ghostscript actually rebuilds the PDF file and it uses various

automated repair functions when doing so. The aim was to see

10 http://www.preforma-project.eu/
11 https://github.com/JoshData/pdf-diff
12 https://get.adobe.com/reader/
13 To be exact, it is not obvious if the error message appears due to an erroneous PDF
file or an error in the validator software. Therefore, we consider both cases
“problematic”.
14 gs -dBATCH -dNOPAUSE -sDEVICE=pdfwrite -sOutputFile=output.pdf input.pdf 
15 https://www.ghostscript.com/doc/current/Ps2pdf.htm#PDFA



which errors and warnings disappear after the conversion. To

indicate the validity, we used all the validators once again on all

the reconstructed files (step c). For the created PDF/A files, we

additionally used veraPDF to validate the PDF/A features (step d)

for the PDF/A files deemed valid in step (c). As a final step (e), we

manually compared some of the original and reconstructed files

with Acrobat Reader and Pdf-diff, specifically the files that the

programs originally considered problematic but deemed well-

formed and valid after the conversion step (b).

(a) Validate
(Ghostscript,
JHOVE, Xpdf)

(c) Validate
(Ghostscript,
JHOVE, Xpdf)

(e) Manual visual
validation

(d) Validate
(veraPDF)

(b) Convert
from PDF

to PDF and PDF/A

All PDFs

Failed PDFs

Converted
PDFs and
PDF/As

PDF/As that are valid as PDFs
Valid
PDFs

Valid
PDF/As

Figure 1: Validation and Conversion Process.

As an actual result from the process, we got various error logs:

Error logs from the validators in step (a), from the conversions in

step (b), from the validators in step (c), a veraPDF error log in step

(d) and a manual error log in step (e).

3 RESULTS

We analyzed the results from the automated conversion and

validation experiment by summarizing the prevalence of the

errors, comparing different validation software and studying how

well the PDF reconstruction and PDF/A conversion fixed the

errors.

3.1 Controlled Testing

Benchmarking the JHOVE PDF Test Corpora is widely studied by

Lindlar et al. (see [5]). We reconstructed and converted the

erroneous 88 PDF files into PDF and PDF/A-1b. None of the three

validators reported any errors in the resulted files. veraPDF

reported only one error in one PDF/A file (T02-05-01_007_invalid-

font-size-operator.pdf). The error was a real value out of range:

“Absolute real value must be less than or equal to 32767.0”.

In the original set, Acrobat Reader could open 36 files

rendering the text “Hello PDF-world!” with the original font.

However, Acrobat Reader displayed an error message when

opening some of these files, or the program fixed the file and

asked for saving the document when exiting. The program

displayed no such messages for the reconstructed PDFs or

converted PDF/As. After the conversion, the text was visible in 45

files in the original font. For ten documents, the conversion

restored the “Hello PDF-world!”, but in one case, the process lost

the text (T04_018_trailer-no-xref-byte-offset.pdf). Additionally, in

three original, four reconstructed and four converted files, the text

was visible in a changed font. Acrobat Reader either opened the

rest of the files in the original set displaying an empty document

or did not open the files at all. The corresponding converted

documents opened as an empty document, and only one of them

did not fully render in Acrobat Reader. This was the same

document that veraPDF reported invalid.

Overall, we could recover half of the synthetically erroneous

PDF documents as well-formed and valid PDF/A files with the

original text and font rendered correctly.

3.2 Prevalence of the Errors

The three validators in step (a) together deemed 30,346 PDF files

in the Govdocs1 set problematic. This is about 13% of all the PDF

files in the set. Ghostscript, JHOVE, and Xpdf found errors in

6,167, 20,595, and 9,116 files respectively. We got a total of 230

different error messages, with Ghostscript reporting 102, JHOVE

96 and Xpdf 32 different messages.

Table 1: Numbers of files and different errors.

Original

PDFs

Reconstructed

PDFs

Converted

PDF/As

Problematic files 28,313 3,528 2,647

Files skipped 2,033 0 8,317

Succeeded files - 24,785 17,349

Number of files 30,346 28,313 28,313

Different errors 130 24 22

Table 1 summarizes the number of problematic files and errors.

The reconstruction phase to PDF and conversion phase to PDF/A

gave a conversion error for 2,033 files. We assume that these files

were too broken to be handled easily and that the output most

likely would not have been desired. Therefore, we moved these

files aside and decided to restart the process for the remaining

28,313 problematic files. We decided to accept warnings during

the conversion. The restarted process reduced the total number of

different error messages to 130, with Ghostscript, JHOVE, and

Xpdf reporting 29, 73, and 28 different messages for 4,187, 19,597

and 8,638 files respectively. Ghostscript and JHOVE reported

errors on the same 415 files while Ghostscript and Xpdf reported

errors on the same 148 files. However, JHOVE and Xpdf caught

3,576 same files. All three validators caught only 30 files. We can

deduct from this that the validators do not find the same issues

congruently.

After reconstructing the original problematic PDF files to PDF

(not PDF/A), the number of different error messages dropped from

130 to 24, with Ghostscript, JHOVE, and Xpdf giving 7, 13, and 4

messages respectively. After the conversion, there were 3,528

problematic files left. A total of 24,785 (87.5%) well-formed and

valid PDF files resulted from the originally problematic files. All

the three validators catch 176 files. JHOVE and Xpdf largely find

the same files problematic as Ghostscript, but JHOVE and Xpdf

catch the same files only partly.

The conversion of the 28,313 problematic files from original

PDF to PDF/A was skipped for 8,317 files, since the converter



reported that it did not meet PDF/A requirements. We decided to

move these files aside, and used 19,996 files. This is 66% of the

originally problematic files. After converting the original PDF files

to PDF/A, the number of different error messages was 22 for 2,089

files, with Ghostscript, JHOVE, and Xpdf giving 7, 13, and 2

messages respectively. Interestingly, the three validators do not

catch errors in any same file. Ghostscript and JHOVE only find

two same files problematic and the same for Ghostscript and Xpdf.

Still, Ghostscript reports problems on 803 files. These validators

do not validate PDF/A properties, so as a final step we additionally

used veraPDF for the succeeded, but originally problematic, files.

As a result, further 558 files failed, making the total number of

problematic PDF/A files 2,647.

Overall, and mainly due to the lack of non-PDF/A-compliant

conversion in some documents, we were able to use a simple

conversion script to make 17,349 (61.2%) well-formed and valid

PDF/A files from the originally problematic files.

3.3 The Error Messages

We list the error messages that appear in over 200 original

Govdocs1 PDF files in Table 2. Additionally, we list the most

common errors after reconstruction to PDF and conversion to

PDF/A. The table includes the number of the original files, the

reconstructed PDF files and the converted PDF/A files that

resulted in the given message.

The most common error message, concerning 12,503 files, is

JHOVEs: “Improperly formed date”. The other two validators did

not detect this error. The three validators produced some other

error message than the one above for 16,026 files, of which JHOVE

detected 7,192 files. As we can see from Table 2, the most common

error messages disappear totally after reconstruction and

conversion. Some errors remain but the number of problematic

files has reduced significantly.

However, a few new error messages (or increase in existing

errors) occur after conversion. The Xpdf error message: “Bad

annotation destination” in the original files actually changed to a

warning message: “Unknown annotation destination type” in

most cases. The JHOVE message: “Malformed dictionary”

originally reported as “Missing or invalid default viewing OCCD”

with Xpdf (OCCD = Optional Content Configuration Dictionary)

in a majority of the cases. The Ghostscript warning: “File has an

invalid xref entry … Rebuilding xref table.” usually is because of

lost fonts: in some cases, the conversion did not embed the

original PDF document’s fonts to converted PDF/A file due to

licensing restrictions. If the font would be used in the document

(that is, not only used in newlines or other non-printable

characters), it would most likely result visual change to the

document since PDF viewers use another font if the user does not

have the original one.

Table 2: Number of files containing the most common error messages in Govdocs1
original PDFs, reconstructed PDFs and converted PDF/As.

Original

PDFs

Reconstructed

PDFs

Converted

PDF/As Validator Message

28,313 28,313 19,996 Number of originally problematic files used in the validation

12,503 (44.2%) 0 0 JHOVE Improperly formed date

5,090 (18.0%) 0 0 Xpdf Syntax Error: Missing or invalid default viewing OCCD

3,446 (12.2%) 0 0 JHOVE Invalid destination object

2,260 (8.0%) 0 0 JHOVE ...PdfInvalidException: Invalid destination object

1,906 (6.7%) 0 0 Ghostscript openjpeg warning: Non conformant codestream TPsot==TNsot.

1,857 (6.6%) 0 0 Ghostscript considering '0000000000 XXXXX n' as a free entry.

1,765 (6.2%) 0 0 Xpdf Syntax Warning: Illegal annotation destination

1,751 (6.2%) 0 0 Xpdf Syntax Warning: Bad annotation destination

653 (2.3%) 0 0 JHOVE Invalid ID in trailer

406 (1.4%) 38 19 JHOVE Lexical error

289 (1.0%) 238 13 JHOVE Invalid character in hex string

242 (0.9%) 94 38 JHOVE Invalid outline dictionary item

215 (0.8%) 213 38 JHOVE Problem with page label structure

215 (0.8%) 0 0 Ghostscript … Invalid indirect destination - referenced object '…' cannot be found

0 1,634 (5.8%) 723 Xpdf Syntax Warning: Unknown annotation destination type

165 736 (2.6%) 236 JHOVE Malformed dictionary: Vector must contain an even number of objects…

167 634 (2.2%) 226 JHOVE Malformed dictionary

289 238 (0.8%) 13 JHOVE Invalid character in hex string

0 224 (0.8%) 7 Xpdf Syntax Error (…): Invalid hex escape in name

215 213 (0.8%) 38 JHOVE Problem with page label structure

17 1 757 (3.8%) Ghostscript Warning: File has an invalid xref entry …. Rebuilding xref table.

0 1,634 723 (3.6%) Xpdf Syntax Warning: Unknown annotation destination type

165 736 236 (1.2%) JHOVE Malformed dictionary: Vector must contain an even number of objects…

167 634 226 (1.1%) JHOVE Malformed dictionary



We list the description of the most common failed PDF/A rules

in Table 3. Rule 6.7.3-1 relates to property interpretation, Rule

6.3.6-1 to font rendering and Rule 6.2.10-1 to unrecognized

operators in compatibility section. Proper handling of these errors

may require expertise on the content of the PDF files. Therefore,

these files warrant a separate investigation.

Table 3: The PDF/A rules where the dataset failed.

Files Failed PDF/A rule description

237 Rule 6.7.3-1: If a document information dictionary

does appear at a document, then all of its entries that

have analogous properties in predefined XMP

schemas, shall also be embedded in the file in XMP

form with equivalent values.

202 Rule 6.3.6-1: For every font embedded in a

conforming file and used for rendering, the glyph

width information in the font dictionary and in the

embedded font program shall be consistent.

63 Rule 6.2.10-1: A content stream shall not contain any

operators not defined in PDF Reference even if such

operators are bracketed by the BX/EX compatibility

operators

56 Other failed rules

3.4 Manual Comparison

For the Govdocs1 set, we decided to select a few sample files from

each of the error messages listed in Table 1 and manually

compared the visual layout between document versions to

determine whether some components in the document seemed to

have been changed or not. We also used a PDF comparison tool to

help with the manual comparison, but its results were not self-

evident. The selected files were restricted to those that contain

only one error and we selected files from each error group. We

selected a few files randomly. Overall, 27 of the compared 42

documents were equal. Fifteen documents displayed the following

changes: Selecting text became impossible in some parts of the

PDF/A document but the visual outcome was equal (seven cases),

a font was changed (four cases), extra features such as layers or

security features were lost (two cases), font style (bolding) was

changed (one case), and some pages were turned 90 degrees (one

case). In some of the cases, the problem was in the process itself

and not the PDF document. For example, losing a font is typically

because of licensing restrictions. However, the loss of text

selection ability probably was a consequence of an error in the

document itself.

Additionally, we manually compared 30 randomly selected

documents from all the problematic files and we found differences

in only a few of them. These differences were practically of the

same type as in the other manual comparison.

As seen in Figure 2, the conversion may give a different result

as an outcome. In this case, it restored data: part of an equation

was originally missing when handling the file with some non-self-

correcting viewer. The example shown in Figure 2 looks obvious,

but it may not be that in some other case. Govdocs1 is an external

test set where we compared originally problematic files. We do

not have fully well-formed and valid versions of these documents

available nor sufficient provenance metadata (despite that we do

have some short information available in the metadata of the file).

Lacking knowledge of the content, we cannot be sure e.g. if the

original erroneous file represents colors of an image or formulas

correctly. Therefore, we decided not to go more into the details of

the visual outcome.

Figure 2: An equation from a Govdocs1 document shown
in the Pdf-diff tool before (upper) and after (lower) the

PDF reconstruction.

4 CONCLUSIONS

In digital preservation repositories where the amount of data is

huge, there is a need to automate preservation activities as much

as possible. Our experiment shows a potential way to handle PDF

files and especially suggest methods to handle problematic files.

It is important to remember that the best way to fix

problematic files is to focus on the process that produces these

files. However, it is common for digital preservation repositories

that submitted data is produced a long time ago and original data

production may have ended. It might be impossible to reproduce

the data or fix the production process which do not exists. For the

repository, it is beneficial to recognize the really problematic or

broken files and let preservation experts focus on these.

Our pilot study shows that reconstructing PDFs can be an

effective method to reduce the amount of problematic files, but

also that other “new” errors may appear this way. Out of 28,313

problematic PDF files, we were able to convert 87.5% to well-

formed and valid PDF files, and 61.2% to well-formed and valid

PDF/A files. Further studies are needed to understand how

validators work in different situations and how to avoid

unnecessary errors and problems in validation. Acquiring deeper

knowledge about the meaning and importance of the errors is a

pre-requisite for devising a process to mitigate the amount of

invalid PDF files.

REFERENCES
[1] Marco Klindt. PDF/A considered harmful for digital preservation. In

Proceedings of the 14th International Conference on Digital Preservation
(iPRES2017) Kyoto, Japan, September 2017.

[2] Juha Lehtonen, Heikki Helin, Kimmo Koivunen, Kuisma Lehtonen, and
Mikko Vatanen. A National Preservation Solution for Cultural Heritage. In
Proceedings of the 12th International Conference on Digital Preservation
(iPRES 2015), pp. 247-248, Chapel Hill, North Carolina, USA, November 2015.

[3] “File formats and standards”, in Digital Preservation Handbook, 2 edition,
https://www.dpconline.org/handbook/technical-solutions-and-tools/file-
formats-and-standards

[4] Juha Lehtonen, Kuisma Lehtonen, Aarno Tenhunen, Juha Törnroos, Ville-
Pekka Vainio, Mikko Vatanen. Impressed by Ingest – Efficient and Reliable
Workflows. In Open Repositories 2016 Conference. Dublin, Ireland, June 2016.

[5] Michelle Lindlar, Yvonne Tunnat, and Carl Wilson. A PDF Test-Set for Well-
Formedness Validation in JHOVE - The Good, the Bad and the Ugly. In
Proceedings of the 14th International Conference on Digital Preservation
(iPRES2017) Kyoto, Japan, September 2017.


